
Improving Performance Using Cpusets on the SGI
Origin 3800

Jeff Hensley

ERDC MSRC

January 9, 2002

User complaints
“Inconsistent performance on ruby”

! Some users were reporting inconsistencies in the time to
run their codes on ruby (512 processor SGI O3K)
• similar or identical jobs could take significantly different

amounts of time
• difficult to analyze or reproduce (results appeared to be

random)
! “Common knowledge” that on single image SGI O3Ks with

large numbers of processors that such behavior occurs.

What’s the cause of this behavior?
! Competition with system tasks

• On a fully loaded machine, system tasks must use the
same resources as user jobs

! Migrating processes
• Processes are not bound to specific processors
• Operating system can move the processes around
• *Data* does not migrate " a process may be accessing

memory located “far away”

What’s the cause of this behavior?

! The “SGI Shuffle”
• Tasks are not “stuck” to a processor; the

operating system moves tasks around
between processors during execution

• Data does not migrate

“SGI Shuffle”

Memory
(4 Gbytes)cpu 4 cpu 3

3pu 3

cpu 1 cpu 2
2

ssinode 1

Task A

A

Task B

B

Task C

C

Memory
(4 Gbytes)cpu 8 cpu 7

3pu 3

cpu 5 cpu 6
2

ssinode 2

Task D

D

“SGI Shuffle”

Memory
(4 Gbytes)cpu 4 cpu 3

3pu 3

cpu 1 cpu 2
2

ssinode 1

A

Task B

B C

Task E Task D

E

Memory
(4 Gbytes)cpu 8 cpu 7

3pu 3

cpu 5 cpu 6
2

ssinode 2

Task A

Task C

D

Enter cpusets
! Cpusets are a logical partitioning of processors and/or

memory
! “boot cpuset” created at system startup --- handles system

tasks and daemons
! When PBS starts a job, a cpuset is created and the job runs

within that cpuset
! Other tasks are not allowed access to the resources of the

cpuset

Cpuset partitioning -- schematic
Dynamic cpusets

user jobs
(248 processors)

(One job per cpuset)

Boot cpuset
system process
(8 processors)

CPUSETS
! Most large single image Origin systems are configured to

use cpusets
! “Common” knowledge that cpusets improve performance
! However, it is difficult to find the results of any tests that

quantify the problem or measure its magnitude

Experimental Results
! SGI provided access to a 256-processor O3K

! Experiments included throughput tests to measure the
performance of the system both with and without cpusets
implemented

! The results of the tests were striking (and surprising)

Throughput Test
! Constructed a throughput test consisting of runs of 6

different codes
• All codes were MPI codes

! Various input decks and processor counts
• 15 distinct runs with multiple copies of many

Throughput Test
! For the throughput test, the jobs were submitted via PBS.

The machine was heavily loaded during the test.

• The throughput test was run 3 times with the machine
configured without cpusets and 3 times with the machine
configured with cpusets.

Throughput Test

747.1412983
746.8512002

1

Test
number

747.411116

With
cpusets

Without
cpusets

CPU Time (hours)
for entire test

Throughput Test
! For the 3 tests, using cpusets saved approximately

• 33%
• 38%
• 42%

cpu time compared without using cpusets

! Note that there is very little variation in the times for the 3
tests using cpusets

Code A

Code A (64 processors)

0
1000
2000
3000
4000
5000
6000

Without cpusets With cpusets

Ti
m

e
(s

) Test 1
Test 2
Test 3

Code B

Code B (32 processors)

0

2000

4000

6000

8000

10000

12000

14000

Without cpusets With cpusets

Ti
m

e
(s

)

Test 1
Test 2
Test 3

Additional Test
! Question: should we use all the processors?

! Used two codes that scale well and submitted jobs that used
all or most of the processors on the machine

Using all the processors?
CODE 1

of with without
processors cpusets cpusets

 1 2 3
248 616 627 627 630
256 n/a 621 630 625

CODE 2

of with without
processors cpusets cpusets

 1 2 3
248 1676 1682 1684 1704
256 n/a 1730 1719 1725

Time in seconds for job run

Experiment 2 - 512 cpus
! Brief access to a 512-processor O3K
! Constructed a simpler throughput test consisting of runs of 5

different user codes (2 of which were serial codes)
! Various input decks and processor counts

• 14 distinct runs with multiple copies of many

Throughput test on 512 processors

! Only ran throughput test once each with cpusets and
without cpusets

! Total cpu time
• 961 hours --- without cpusets
• 744 hours --- with cpusets

! Saved 23% cpu time by using cpusets

Throughput test on 512 processors

! Why not the same size improvement as observed in
Experiment 1?
• Didn’t load the machine up as well
• Different mix of jobs
• Shorter wall clock time – jobs at the end were actually

running “almost dedicated”

! Did include serial jobs in this test.
• using cpusets saved 11% on all of the serial tasks.

Conclusions
! cpusets are a good idea!

! On a heavily loaded large scale SGI Origin there will be a
significant increase in average job throughput.

! Improved performance will be seen on both parallel and
serial codes (however, there will be some codes which show
little difference).

Comments
! One thing to be remembered: HPC systems are still

“community” assets
What one user does on the machine can effect the
performance of another application
• Competition for processors/memory
• I/O

! We have a duty to be “responsible” users

	Improving Performance Using Cpusets on the SGI Origin 3800
	User complaints“Inconsistent performance on ruby”
	What’s the cause of this behavior?
	What’s the cause of this behavior?
	“SGI Shuffle”
	“SGI Shuffle”
	Enter cpusets
	Cpuset partitioning -- schematic
	CPUSETS
	Experimental Results
	Throughput Test
	Throughput Test
	Throughput Test
	Throughput Test
	Code A
	Code B
	Additional Test
	Using all the processors?
	Experiment 2 - 512 cpus
	Throughput test on 512 processors
	Throughput test on 512 processors
	Conclusions
	Comments

